Konversi Bilangan Biner ke Bilangan Heksadesimal dan Konversi Bilangan Desimal ke Bilangan Biner


CARA MENGKONFERSIKAN BILANGAN BINER MENJADI BILANGAN HEXSA DESIMAL

Artikel ini akan menjelaskan cara mengonversikan bilangan biner (bilangan berdasar dua) menjadi bilangan heksadesimal (bilangan berdasar enam belas). Baik untuk coding, untuk kelas matematika, atau untuk novel fiksi sains yang Anda sukai, bilangan heksadesimal adalah suatu alat yang berguna dan mudah digunakan untuk menulis bilangan biner dengan cepat. Karena kedua sistem bilangan tersebut berdasar pada perpangkatan 2, metode ini lebih mudah daripada metode konversi yang lebih umum, seperti desimal ke biner. Anda hanya membutuhkan keterampilan menambahkan dan menghitung dasar untuk mengubah suatu angka biner menjadi angka heksadesimal.

METODE1
Membuat Konversi Dasar

1

Siapkan angka biner (minimum empat) yang ingin dikonversi. Angka bilangan biner hanya ada dua, yaitu 1 dan 0. Angka bilangan heksadesimal adalah 0-9 dan A-F karena bilangan heksadesimal berdasar 16. Anda dapat mengubah angka biner apa pun menjadi angka heksadesimal (1, 01, 101101, dll.), tetapi Anda butuh setidaknya empat angka untuk membuat konversi (0101 menjadi 5, 1100 menjadi C, dll.). Artikel ini akan menggunakan contoh angka biner 1010.
  • 1010
  • Kalau angka biner yang hendak Anda ubah jumlahnya tidak sampai empat, tambahkan angka 0 ke bagian awalnya sehingga berjumlah 4. Misalnya, 01 menjadi 0001.[1]


2

Tuliskan angka "1" kecil di atas angka terakhir. Setiap angka dalam empat angka tersebut mewakili sebuah angka dari sistem desimal. Angka terakhir mewakili angka 1. Sisanya akan kita pelajari di langkah berikutnya. Sekarang, tuliskan angka "1" kecil di atas angka terakhir.[2]
  • 1010
  • Catatan: di sini Anda tidak sedang melakukan operasi perpangkatan. Ini hanyalah sebuah cara untuk melihat angka apa yang diwakili oleh posisi apa.

3

Tuliskan angka "2" kecil di angka ketiga, angka "4" kecil di atas angka kedua, dan angka "8" kecil di atas angka pertama. Ketiga angka tersebut adalah angka-angka yang diwakili oleh angka yang berada dalam sistem biner. Alasannya adalah: setiap angka tersebut mewakili perpangkatan 2. Pertama adalah , kedua adalah , dan seterusnya.
  • 1010



4

Hitung berapa angka yang "hadir". Perhitungan ini mudah kalau Anda punya empat angka dan Anda tahu masing-masing angka tersebut mewakili angka apa dalam sistem desimal. Kalau angka pertama adalah 1, maka Anda punya 8; kalau angka selanjutnya 0, maka tidak ada 4. Kedua angka selanjutnya menunjukkan apakah angka 2 dan 1 hadir. Kembali pada contoh kita:[3]
  • 1010



5

Tambahkan keempat angka yang ada. Kini Anda tinggal perlu menambahkan keempat angka yang diwakili tersebut.
  • 1010
  • 8 0 2 0
  • Jawaban: angka biner 1010 dikonversi menjadi angka A dalam sistem heksadesimal.


6

Ubah angka lebih besar dari "9" menjadi sebuah huruf. Ini agar Anda tidak bingung saat membaca angka dalam bilangan heksadesimal ("apakah 15 ini 1 dan 5 atau 15?") Sistem ini sangat mudah karena Anda tak bisa punya angka heksadesimal yang lebih tinggi dari 15. Mulai gunakan huruf pada angka 10, seperti ini:
    A=10
    B=11
    C=12
    D=13
    E=14
    F=15





7

Coba berlatih dengan contoh lain agar Anda semakin mumpuni. Berikut ini adalah contoh-contoh latihan yang dapat Anda lakukan.
  • Konversikan angka biner 1 menjadi heksadesimal.
    • Tambahkan nol sehingga menjadi empat angka: 0001
    • Tuliskan angka yang diwakili: 
    • Lakukan operasi penambahan pada angka yang diwakili: 
    • Jawaban: 1
  • Konversikan angka biner 0101 menjadi heksadesimal.
    • Pastikan Anda punya empat angka: 0101
    • Tuliskan angka yang diwakili: 
    • Lakukan penambahan pada angka yang diwakili: 
    • Jawaban: 5
  • Konversikan 1110 menjadi heksadesimal.
    • Pastikan Anda punya empat angka: 1110
    • Tuliskan angka yang diwakili: 
    • Lakukan penambahan pada angka yang diwakili: 
    • Jawaban: E
  • Konversikan 0011 menjadi heksadesimal.
    • Pastikan Anda punya empat angka: 0011
    • Tuliskan angka yang diwakili: 
    • Lakukan penambahan pada angka yang diwakili: 
    • Jawaban:B
Mengonversi Angka Biner Panjang


1

Kelompokkan angka biner Anda menjadi empat angka per kelompok, mulai dari kanan. Sistem bilangan heksadesimal mewakili empat angka biner dalam satu angka heksadesimal. Untuk mengonversikan sebuah angka biner panjang, pertama-tama Anda perlu memecahkan angka biner tersebut menjadi empat angka per kelompok, mulai dari kanan. Misalnya:
  • Konversikan  menjadi heksadesimal.





2

Tambahkan angka 0 di awal kelompok pertama jika tidak sampai empat angka.Angka 0 tersebut memang tidak akan berpengaruh sama sekali pada hitungan. Penambahan ini hanya untuk membuat pengonversian lebih mudah. Sebaiknya semua kelompok yang ada terdiri dari empat angka biner.
  • Konversikan  menjadi heksadesimal.
  • '







  1. 3
    Konversikan masing-masing kelompok satu per satu. Anda perlu mengonversi setiap kelompok biner satu per satu. Di atas kertas, pisahkanlah setiap kelompok agar lebih gampang dihitung. Kemudian, lakukan operasi pengonversian pada setiap kelompok. Misalnya (angka yang dikonversikan berikut ini sama dengan langkah sebelumnya):[4]

  2. Gambar berjudul Convert Binary to Hexadecimal Step 11
    4
    Hilangkan spasi untuk mendapatkan angka heksadesimal Anda. Setelah Anda selesai mengonversikan seluruh kelompok 4 angka tersebut, gabungkanlah semuanya untuk mendapatkan jawaban. Maka:
    • (0011) (1011) (0010) (1001)</math>
    • 3 B 2 9
  3. Gambar berjudul Convert Binary to Hexadecimal Step 12
    5
    Hafalkan atau gunakan sebuah tabel konversi untuk mengecek jawaban Anda.Hanya ada 16 kombinasi 4 angka biner yang mungkin. Jika Anda tidak ingin memecahkan setiap angka biner secara individual, gunakanlah tabel konversi di bawa
  • Sistem bilangan biner berdasar 2 (hanya ada 2 angka, yaitu 1 dan 0). Sistem bilangan heksadesimal berdasar 16. Anda membutuhkan empat angka biner untuk mengonversikan bilangan biner menjadi heksadesimal karena Anda butuh empat angka 2 yang berbeda ().

Peringatan

  • Kalau Anda mencari sebuah alamat memori biner yang diwakili angka heksadesimal dan Anda salah melakukan konversi, hasilnya dalam angka heksadesimal pun akan salah.

Komentar

Postingan populer dari blog ini

Konversi Bilangan Biner ke Bilangan Desimal dan Konversi Bilangan Biner ke Bilangan Oktal